2 research outputs found

    Extending Memory Capacity in Consumer Devices with Emerging Non-Volatile Memory: An Experimental Study

    Full text link
    The number and diversity of consumer devices are growing rapidly, alongside their target applications' memory consumption. Unfortunately, DRAM scalability is becoming a limiting factor to the available memory capacity in consumer devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs) into the market, which can be used to increase the memory capacity of consumer devices by augmenting or replacing DRAM. Since entirely replacing DRAM with NVM in consumer devices imposes large system integration and design challenges, recent works propose extending the total main memory space available to applications by using NVM as swap space for DRAM. However, no prior work analyzes the implications of enabling a real NVM-based swap space in real consumer devices. In this work, we provide the first analysis of the impact of extending the main memory space of consumer devices using off-the-shelf NVMs. We extensively examine system performance and energy consumption when the NVM device is used as swap space for DRAM main memory to effectively extend the main memory capacity. For our analyses, we equip real web-based Chromebook computers with the Intel Optane SSD, which is a state-of-the-art low-latency NVM-based SSD device. We compare the performance and energy consumption of interactive workloads running on our Chromebook with NVM-based swap space, where the Intel Optane SSD capacity is used as swap space to extend main memory capacity, against two state-of-the-art systems: (i) a baseline system with double the amount of DRAM than the system with the NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-art (yet slower) off-the-shelf NAND-flash-based SSD, which we use as a swap space of equivalent size as the NVM-based swap space

    Extending Memory Capacity in Modern Consumer Systems With Emerging Non-Volatile Memory: Experimental Analysis and Characterization Using the Intel Optane SSD

    No full text
    DRAM scalability is becoming a limiting factor to the available memory capacity in consumer devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs) into the market, which can be used to increase the memory capacity of consumer devices by augmenting or replacing DRAM. In this work, we provide the first analysis of the impact of extending the main memory space of consumer devices using off-the-shelf NVMs. We equip real web-based Chromebook computers with the Intel Optane solid-state drive (SSD), which contains state-of-the-art low-latency NVM, and use the NVM as swap space. We analyze the performance and energy consumption of the Optane-equipped Chromebooks, and compare this with (i) a baseline system with double the amount of DRAM than the system with the NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-art NAND-flash-based SSD. Our experimental analysis reveals that while Optane-based swap space provides a cost-effective way to alleviate the DRAM capacity bottleneck in consumer devices, naive integration of the Optane SSD leads to several system-level overheads, mostly related to (1) the Linux block I/O layer, which can negatively impact overall performance; and (2) the off-chip traffic to the swap space, which can negatively impact energy consumption. To reduce the Linux block I/O layer overheads, we tailor several system-level mechanisms (i.e., the I/O scheduler and the I/O request completion mechanism) to the currently-running application鈥檚 access pattern. To reduce the off-chip traffic overhead, we leverage an operating system feature (called Zswap) that allocates some DRAM space to be used as a compressed in-DRAM cache for data swapped between DRAM and the Intel Optane SSD, significantly reducing energy consumption caused by the off-chip traffic to the swap space. We conclude that emerging NVMs are a cost-effective solution to alleviate the DRAM capacity bottleneck in consumer devices, which can be further enhanced by tailoring system-level mechanisms to better leverage the characteristics of our workloads and the NVM.ISSN:2169-353
    corecore